Найважливіша функція печінки – підтримання сталого рівня глюкози у крові.

a М’язова тканина,яка в період інтенсивної роботи поглинає значну кількість глюкози з крові і використовує її для синтезу глікогену. Розкладання глікогену, синтезованого у м’язах є важливим джерелом енергії, необхідної для забезпечення їх здатності до скорочення. Оскільки при фізичній роботі обмін вуглеводів у м’язах відбувається в анаеробних умовах, то глкозо-6-фосфат, який утворюється під час розкладання глікогену, перетворюється на молочну кислоту. В період відпочинку організму частина молочної кислоти використовується для синтезу глікогену.

Зв’язок між глікогеном, синтезованим у м’язах і печінці(цикл Корі).: глікоген печінки постачає в кров глюкозу, яка використовується для синтезу глікогену у м’язах; глікоген, синтезований у м’язах, розкладається на молочну кислоту, з якої синтезується глікоген у печінці.

Розщепленню глікогену до глюкози сприяють гормони підшлункової залози глюкагон і гормон надниркових залоз адреналін.

Печінка Кров М’язи
Глюкоза Глюкоза Глюкоза
­ ¯
Глікоген Глікоген
­ ¯
Молочна кислота ¬ Молочна кислота ¬ Молочна кислота

Значна кількість глюкози, що вивільняється печінкою, потрапляє в клітини головного мозку, де окислюється до кінцевих продуктів. Усі енергетичні затрати центральної нервової системи компенсуються за рахунок вуглеводів. Тому зниження вмісту цукру в крові негативно впливає на функції головного мозку.

Вуглеводи органів і тканин організмів людини і тварин – глікоген і глюкоза, постійно зазнають різних перетворень: процесів розкладання вуглеводів з вивільненням енергії.

Шляхи перетворення глюкозо-6-фосфату в печінці

Реакції гліколізу (цифри – кількість молекул)

Бродіння та анаеробне розщеплення вуглеводів– це внутрішні окислювально-відновні процеси, в результаті яких відбувається накопичення енергії та регенерується окислення НАД+, що є необхідним для продовження гліколізу та бродіння, так як вміст НАД+ обмежений.



Можливі шляхи перетворення піровиноградної кислоти:

þ молочнокисле бродіння (кінцевий продукт – молочна кислота);

þ цикл трикарбонових кислот (кінцевий продукт – СО2 та Н2О).

Цикл трикарбонових кислот (Г.Кребс, 1937) – ряд послідовних реакцій (початковими продуктами яких є ацетильні групи вуглеводів, жирів та амінокислот), що забезпечують повний розпад піровиноградної кислоти ПВК до кінцевих продуктів – СО2 та води. Всі реакції циклу відбуваються в матриці мітохондрій.

Підготовча фаза циклу – окислення ПВК до ацетил-Коа.

ПВК + НАД+ + КоА ® Ацетил-КоА + НАДН + Н+ + СО2

Ä В циклі Кребса ацетил-КоА окислюється до СО2 і Н2О. При цьому вивільняється певна кількість енергії.

Ä Всього в процесі перетворення однієї молекули піровиноградної кислоти до ацетил-КоА і останнього до СО2 і Н2О синтезується 12 + 3 = 15 молекул АТФ (4 молекули НАД·Н + Н+, 1 молекула ФАД і 1 молекула АТФ).

Ä Оскільки з однієї молекули глюкози утворюється дві молекули піровиноградної кислоти, то всього утворюється 15·2 = 30 молекул АТФ (з однієї молекули НАД·Н + Н+ утворюються з молекули АТФ, а з однієї молекули ФАД утворюються 2 молекули АТФ).

Ä При гліколізі утворюються 8 молекул АТФ (2 молекули НАД·Н + Н+ і 2 молекули АТФ).

Ä Загальний енергетичний ефект аеробного розкладання однієї молекули глюкози до СО2 і Н2О становить 38 молекул АТФ, що дорівнює 1596 кДж енергії. Перетворення молекули глюкози в анаеробних умовах вивільняє 84 кДж енергії.

Отже, основним джерелом енергії для організму людини є аеробне окислення органічних сполук. В цьому процесі значну роль відіграє глюкоза, яка міститься в крові.

Цикл трикарбонових кислот (цикл Кребса)

Обмін вуглеводів. Транспорт вуглеводів


3810187267992612.html
3810238057848105.html
    PR.RU™